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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO FINAL EXAMINATION

Directions. Do all six problems (weights are indicated). This is a closed-book closed-note exam
except for five 81

2 × 11 inch sheets containing any information you wish on both sides. You are free
to approach the proctor to ask questions – but he will not give hints and will be obliged to write
your question and its answer on the board. Roots, circular functions, etc., may be left unevaluated
if you do not know them. Use a bluebook. Do not use scratch paper – otherwise you risk losing part
credit. Cross out rather than erase any work that you wish the grader to ignore. Justify what you
do. Box or circle your answer.

1. (20 points)
In the northern hemisphere at colatitude λ (as
measured from the north pole, equivalent to
north latitude π

2 − λ), an ice rink is built by
pouring water into an enclosure and then allow-
ing it to freeze. If the rink is built this way, an
isolated hockey puck that lies at rest on the ice
won’t move at all, even if the ice is frictionless
(which is the case here).

The puck (of mass m) is tied to a frictionless
center swivel using a taut massless rope of length
R. The puck is set into counterclockwise uniform
circular motion about the swivel point. As seen
by an observer standing on the ice, the puck has
a constant angular velocity ω about the swivel,
i.e. it retraces its path around the ice every 2π

ω
seconds. The puck moves slowly: you may not
assume that ω is much larger than Ω, the angu-
lar frequency (= 2π/day) of the earth’s rotation
about its axis.

What is the tension τ in the rope? You may
work this problem either in the rest frame of the
observer, or in the rest frame of the puck – but
you must state which frame you are using.
Solution:
In the observer’s frame, the puck is accelerating
inward toward the swivel with acceleration Rω2,
and it feels an outward Coriolis force equal to
2mRΩcosλ. Therefore

τ = mR
(
ω2 + 2ωΩcosλ

)
.

In the puck’s (∗) frame, the vertical component
of its angular velocity is ω∗ = ω + Ωcosλ. This

would seem to require a centrifugal force

τ = mRω∗2

= mR
(
ω2 + 2ωΩcosλ+Ω2 cos2 λ

)
.

However, the last term must be compensated
by the normal force of the ice, since the ten-
sion must vanish if the puck isn’t moving with
respect to the ice (ω = 0). Therefore

τ = mR
(
ω2 + 2ωΩcosλ

)
.

2. (30 points)
A fixed upright solid cone with a height h and
a circular base of radius R has a frictionless
surface. The cone intercepts a vertical rain of
tiny hailstones, which scatter elastically off the
curved part of the cone. Since they are so tiny,
only a negligible fraction of the hailstones hit
the very tip of the cone. Neglect gravity.
(a) (10 points)
Show that the scattering angle Θ of the hail-
stones is 2α, where α = arctan (R/h) is the
half-angle of the cone. You may use this result
in the remainder of the problem.
Solution:
For scattering off the cone, the hailstone’s angle
of incidence θinc must equal its angle of reflec-
tion θrefl, because the frictionless surface of the
cone can exert only a normal impulse on the
hailstone. Since the angle of incidence is

θinc =
π

2
− α ,
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the scattering angle is

Θ = π − θinc − θrefl

= π − 2(π
2 − α)

= 2α .

(b) (10 points)
Using a purely geometrical argument, write down
the total cross section σT for elastic scattering
of a hailstone by the cone.
Solution:
As seen by the hailstones, the cone has a cross-
sectional area equal to πR2. Therefore

σT = πR2 .

(c) (10 points)
Taking φ to be the hailstone’s angle about the
cone’s azimuth, write down the differential cross
section

d2σ

sinΘ dΘ dφ
for elastic scattering of a hailstone by the cone.
[Hint: integrating the differential cross section
over the full solid angle should yield σT .]
Solution:
From (a), the hailstones have Θ = 2α. There-
fore the differential cross section is proportional
to δ(Θ − 2α). Take the (unknown) constant of
proportionality to be equal to C. Using the hint,

σT =
∫ π

0

sinΘ dΘ
∫ 2π

0

dφ
d2σ

sinΘ dΘ dφ

πR2 =
∫ π

0

sinΘ dΘ
∫ 2π

0

dφCδ(Θ− 2α)

=
∫ π

0

sinΘ dΘ2π Cδ(Θ− 2α)

= 2πC sin 2α

C =
πR2

2π sin 2α
d2σ

sinΘ dΘ dφ
=

R2

2 sin 2α
δ(Θ− 2α) .

3. (40 points)
A physical system has a Lagrangian that is nor-
malized (scaled) to be dimensionless. It is equal
to

L(a, b, ȧ, ḃ, t) = 1
2 ȧ

2 + 1
2 (aḃ)

2 − an ,

where a and b are dimensionless generalized co-
ordinates, a > 0, n is an unspecified integer, and
the time t is normalized so that it is dimension-
less as well.
(a) (10 points)
Use one Euler-Lagrange equation to find the con-
served canonical momentum p0 in terms of a, b,
ȧ, and ḃ.
Solution:

0 =
∂L
∂b

constant =
∂L
∂ḃ

p0 = a2ḃ .

(b) (10 points)
Write the other Euler-Lagrange equation. Sub-
stitute p0 so that this equation is expressed
entirely in terms of one of the generalized coor-
dinates, its time derivatives, and constants.
Solution:

∂L
∂a

=
d

dt

∂L
∂ȧ

−nan−1 + aḃ2 = ä

−nan−1 + a
(p0
a2

)2

= ä

−nan−1 +
p20
a3

= ä .

(c) (10 points)
Find a condition on n such that it is possible for
the surviving generalized coordinate in part (b)
to be constant.
Solution:

−nan−1 +
p20
a3
0

= 0

p20
a3
0

= nan−1
0

n > 0 .

(d) (10 points)
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If the “constant” generalized coordinate in part
(c) were perturbed slightly, would it oscillate
stably about its “constant” value? Explain.
Solution:
Examining the structure of the Lagrangian, the
actual (normalized) potential is an and the pseu-
dopotential is 1

2 (aḃ)
2 = 1

2p
2
0/a

2. The effective
potential, which is the sum of the two, is equal
to +∞ both at a = 0 and at a = ∞. Thus
the extremum in the effective potential, where it
is possible for a to be constant, is a minimum
rather than a maximum. Therefore a is stable
about its constant value.

Alternatively, the effective potential may be dif-
ferentiated twice to get the effective spring con-
stant, or the method of perturbations may be
applied.

4. (45 points)
A double pendulum consists of a top bob of mass
3m, hung from the ceiling by a string of length
�; and a bottom bob of mass m, hung from the
top bob by another string of length �. The top
string makes an angle φ � 1 from the vertical
direction; the bottom string makes an angle
θ � 1, also measured from the vertical direction.
Note that the two bobs have different masses.
(a) (10 points)
If the kinetic energy is expressed in units of
m�2, the potential energy is expressed in units of
mg�, and the time is expressed in units of

√
�/g,

making all possible small-angle approximations,
show that (within an additive constant) the
Lagrangian can be written

L = 1
2

(
4φ̇2 + 2φ̇θ̇ + θ̇2 − 4φ2 − θ2

)
.

You may use this result for the remainder of the
problem.
Solution:
Let (x, y) be the coordinates of the top bob,
and (u, v) be the coordinates of the bottom
bob, with respect to their respective equilibrium
points. Then

x = � sinφ ≈ �φ

y = �(1− cosφ) ≈ 1
2�φ

2

u = x+ � sin θ ≈ x+ �θ

v = u+ �(1− cos θ) ≈ y + 1
2�θ

2 .

The kinetic energy is

2T
m�2

= 3(ẋ2 + ẏ2) + u̇2 + v̇2

≈ 3ẋ2 + u̇2

= 3φ̇2 + (φ̇+ θ̇)2

= 4φ̇2 + 2φ̇θ̇ + θ̇2 .

The potential energy is

2U
mg�

= 3y + v

= 3φ2 + (φ2 + θ2)

= 4φ2 + θ2 .

Therefore the normalized Lagrangian is

L = 1
2

(
4φ̇2 + 2φ̇θ̇ + θ̇2 − 4φ2 − θ2

)
.

(b) (15 points)
Expressed as a ratio to

√
g/�, find the angu-

lar frequencies of this system’s normal modes.
[Hint: the winding number of this system turns
out to be

√
3.]

Solution:
Applying the Euler-Lagrange equations yields

−4φ = 4φ̈+ θ̈

−θ = θ̈ + φ̈ .

Looking for solutions of the form

φ = φ0 cosωt
θ = φ0 cosωt ,

we obtain

0 = 4(1− ω2)φ0 − ω2θ0

0 = (1− ω2)θ0 − ω2φ0 .

The secular determinant must vanish:

0 = 4(1− ω2)2 − ω2

= 3ω4 − 8ω2 + 4

ω2 =
3± 2
6

ω =

√
2
3
or

√
2 .
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(c) (10 points)
If you were unable to make the approximations
φ � 1 and θ � 1, you would need to solve this
system numerically. This can be easier if you
use a set of first-order coupled partial differen-
tial equations, rather than a set of second-order
partial differential equations. Given the La-
grangian, how would you obtain this first-order
set of equations? (Only an explanation of what
you would do is required.)
Solution:
The desired set of first-order coupled partial dif-
ferential equations are Hamilton’s equations

φ̇ =
∂H
∂pφ

ṗφ = −∂H
∂φ

θ̇ =
∂H
∂pθ

ṗθ = −∂H
∂θ

.

The canonical momenta are

pφ =
∂L
∂φ̇

pθ =
∂L
∂θ̇

.

The Hamiltonian is

H = φ̇pφ + θ̇pθ − L ,

where H must be reexpressed in terms of φ, θ,
pφ, and pθ.
(d) (10 points)
Again for the conditions of part (c) (φ and θ
not necessarily small), assume that you have an
ideal double pendulum, an arbitrarily fast and
precise computer, and “fairly accurate” initial
conditions. Would you expect to obtain a “fairly
accurate” prediction for its motion? Would your
expecations depend on the range of motion that
is considered? Explain.
Solution:
When the double pendulum with equal bob
masses was simulated numerically by Hand, he

found that the difference between solutions for
infinitesimally different initial conditions grew
exponentially with the number of periods con-
sidered, when the initial angle of the top bob
was large (90◦). Both Hand’s pendulum and
the present pendulum have irrational winding
numbers, so we assume that the behavior of the
current pendulum would be similar: when the
initial angles are sufficiently large, “fairly ac-
curate” predictions can’t be made, even if the
initial conditions are known with fair accuracy.

5. (40 points)
A physical system is described by a single di-
mensionless generalized coordinate b(s, t) that is
a function of two independent variables: a time
variable t and a (one-dimensional) field variable
s. When s and t are normalized (scaled) to be
dimensionless, and the Lagrangian density L′ is
similarly renormalized, L′ takes the form

L′(b, ∂b
∂s ,

∂b
∂t , s, t) =

1
2

(
∂b
∂s

)2 − 1
2

(
∂b
∂t

)2
.

(a) (10 points)
Using the version of the Euler-Lagrange equa-
tion that is appropriate for a Lagrangian density,
show that the equation controlling the evolution
of b(s, t) is

∂2b
∂s2 − ∂2b

∂t2 = 0 .

You may use this result in the remainder of this
problem.
Solution:

d

ds

∂L′

∂ ∂b
∂s

+
d

dt

∂L′

∂ ∂b
∂t

=
∂L′

∂b

∂2b
∂s2 − ∂2b

∂t2 = 0 .

This is a wave equation with unit phase veloc-
ity.
(b) (10 points)
If −∞ < s < ∞, i.e. there are no boundaries
for s, what is the general solution b(s, t) to this
equation?
Solution:

b(s, t) = b+(s− t) + b−(s+ t) ,

where b+ and b− are any two differentiable func-
tions of their arguments. This describes a shape
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b+ propagating in the +s direction, and a shape
b− propagating in the −s direction, each with
phase velocity equal (in these coordinates) to
unity.
(c) (10 points)
Now impose the boundary condition

b(s = 0, t) = b(s = 1, t) = 0 .

What are the angular frequencies of the normal
modes of this system?
Solution:
When boundary conditions are imposed, the so-
lutions become sinusoidal standing waves of the
form

b(s, t) ∝ sin ks cos kt ,

where the harmonic functions are chosen to sat-
isfy the particular boundary conditions that are
imposed. Here we choose sin ks because b(s =
0) = 0. The boundary condition b(s = 1) = 0 is
satisfied for k = π, 2π, 3π... Therefore the nor-
mal angular frequencies are ω = π, 2π, 3π...
(d) (10 points)
Finally, retaining the boundary condition intro-
duced in part (c), impose the initial conditions

b(s, t = 0) = sinπs
∂b
∂t (s, t = 0) = 0 .

What is the earliest time t0 such that

b(s, t0) = −b(s, t = 0) ,

i.e. the field b(s, t) reverses sign but is otherwise
unchanged? Explain your reasoning.
Solution:
The boundary condition is such that only the
first Fourier component k1 is excited. At
k1t0 = π, it will change sign. Therefore, since
k1 = π, t0 = 1.

Alternatively, you may use the fact that half
of the initial waveform propagates to the left
and half to the right. Each is inverted at the
boundary. After a total propagation distance of
1
2 + 1

2 = 1, the two inverted waveforms recom-
bine. Again the elapsed time is t0 = 1.

6. (25 points)
A one-dimensional physical system with gen-
eralized coordinate q and canonically conju-
gate momentum p is described by a Hamil-
tonian H(q, p, t) that is a smooth function of
the variables upon which it depends. This is
a conservative system (no dissipation), so that
dH/dt vanishes, i.e. H is a constant of the mo-
tion.
(a) (10 points)
Prove that ∂H/∂t vanishes.
Solution:

dH
dt

=
∂H
∂t

+
∂H
∂q

q̇ +
∂H
∂p

ṗ

0 =
∂H
∂t

− ṗq̇ + q̇ṗ

0 =
∂H
∂t

,

where Hamilton’s equations are used in the next
to last line.
(b) (15 points)
This system also is characterized by a differ-
ent smooth function F (q, p, t) of the same vari-
ables. It is known that F is also a constant
of the motion. The quantity ∂F/∂t describes
the explicit time dependence of the function F ;
it can be nonzero even when F is conserved.
Prove that ∂F/∂t is a constant of the mo-
tion.
Solution:

0 =
dF

dt
=
∂F

∂t
+ [F,H]

d

dt

∂F

∂t
=
d

dt
[H, F ]

d

dt

∂F

∂t
= [Ḣ, F ] + [H, Ḟ ]
= [0, F ] + [H, 0]
= 0 .


